Synaptically activated Cl- accumulation responsible for depolarizing GABAergic responses in mature hippocampal neurons.

نویسندگان

  • Y Isomura
  • M Sugimoto
  • Y Fujiwara-Tsukamoto
  • S Yamamoto-Muraki
  • J Yamada
  • A Fukuda
چکیده

It is known that GABA, a major inhibitory transmitter in the CNS, acts as an excitatory (or depolarizing) transmitter transiently after intense GABAA receptor activation in adult brains. The depolarizing effect is considered to be dependent on two GABAA receptor-permeable anions, chloride (Cl-) and bicarbonate (HCO3-). However, little is known about their spatial and temporal profiles during the GABAergic depolarization in postsynaptic neurons. In the present study, we show that the amplitude of synaptically induced depolarizing response was correlated with intracellular Cl- accumulation in the soma of mature hippocampal CA1 pyramidal cells, by using whole cell patch-clamp recording and Cl- imaging technique with a Cl- indicator 6-methoxy-N-ethylquinolinium iodide (MEQ). The synaptically activated Cl- accumulation was mediated dominantly through GABAA receptors. Basket cells, a subclass of fast-spiking interneurons innervating the somatic portion of the pyramidal cells, actually fired at high frequency during the Cl- accumulation accompanying the depolarizing responses. These results suggest synaptically activated GABAA-mediated Cl- accumulation may play a critical role in generation of an excitatory GABAergic response in the mature pyramidal cells receiving intense synaptic inputs. This may be the first demonstration of microscopic visualization of intracellular Cl- accumulation during synaptic activation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparable GABAergic mechanisms of hippocampal seizurelike activity in posttetanic and low-Mg2+ conditions.

It is known that GABA is a major inhibitory neurotransmitter in mature mammalian brains, but the effect of this substance is sometimes converted into depolarizing or even excitatory when the postsynaptic Cl- concentration becomes high. Recently we have shown that seizurelike afterdischarge induced by tetanic stimulation in normal extracellular fluid (posttetanic afterdischarge) is mediated thro...

متن کامل

Distinct types of ionic modulation of GABA actions in pyramidal cells and interneurons during electrical induction of hippocampal seizure-like network activity.

It has recently been shown that electrical stimulation in normal extracellular fluid induces seizure-like afterdischarge activity that is always preceded by GABA-dependent slow depolarization. These afterdischarge responses are synchronous among mature hippocampal neurons and driven by excitatory GABAergic input. However, the differences in the mechanisms whereby the GABAergic signals in pyrami...

متن کامل

Depolarizing GABAergic conductances regulate the balance of excitation to inhibition in the developing retinotectal circuit in vivo.

Neurotransmission during development regulates synaptic maturation in neural circuits, but the contribution of different neurotransmitter systems is unclear. We investigated the role of GABAA receptor-mediated Cl- conductances in the development of synaptic responses in the Xenopus visual system. Intracellular Cl- concentration ([Cl-]i) was found to be high in immature tectal neurons and then f...

متن کامل

GABA is depolarizing in hippocampal dentate granule cells of the adolescent and adult rats.

GABAergic signaling in hippocampal pyramidal neurons undergoes a switch from depolarizing to hyperpolarizing during early neuronal development. Whether such a transformation of GABAergic action occurs in dentate granule cells (DGCs), located at the first stage of the hippocampal trisynaptic circuit, is unclear. Here, we use noninvasive extracellular recording to monitor the effect of synaptical...

متن کامل

Comparable GABAergic mechanisms of hippocampal seizure-like activity in post-tetanic and low-Mg conditions

It is known that GABA is a major inhibitory neurotransmitter in mature mammalian brains, but the effect of this substance is sometimes converted into depolarizing or even excitatory when the postsynaptic Cl concentration becomes high. Recently we have shown that seizure-like afterdischarge induced by tetanic stimulation in normal extracellular fluid (post-tetanic afterdischarge) is mediated thr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 90 4  شماره 

صفحات  -

تاریخ انتشار 2003